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I. PHASE BEHAVIOR OF CONFINED HARD
SPHERES: THE 5�→ 44 TRANSITION

We consider a system consisting of N hard spheres of
diameter σ confined between two parallel hard walls with
a surface area A and separated by a distance H/σ = 4.
The packing fraction for the system is defined as η =
πNσ3/(6AH). According to free-energy calculations [1],
the system exhibits a first-order phase transition from a
liquid to a crystal phase consisting of four triangular lay-
ers (44), and a first-order phase transition from the 44
crystal phase to a crystal phase consisting of five square
layers (5�) with a 5� − 44 phase coexisting regime
0.537 < η < 0.571.

To obtain the chemical potential differences between
the phases in the metastable regions of the phase dia-
gram, we use event-driven molecular dynamics (EDMD)
simulations to calculate the equation of state. In an
EDMD simulation, the system evolves via a time-ordered
sequence of elastic collision events, which are described
by Newton’s equations of motion. The spheres move at
constant velocity between collisions, and their velocities
are updated when a collision occurs. We compute the
reduced 2D lateral pressure P ∗ = βPσ2 via the virial
theorem,

P ∗ = βPσ2 =
Nσ2

A

1− βm

2t

1

N

N∑
i<j

rij · vij

 , (1)

where m = 1 is the mass of the particles, N = 12500 is
the number of particles, β = 1/kBT , kB is the Boltzmann
constant, T is the temperature, rij and vij are respec-
tively the displacement and velocity of particle i relative
to those of particle j, and t is the time interval. Time is

measured in MD units τ =
√

mσ2

kBT
. The system is equi-

librated for 800τ , and the pressure is measured for an
additional 200τ . Figure S1 shows the equations of states
obtained from the simulation.

In this work, we study the kinetics of the phase transi-
tion from a metastable 5�-crystal to a stable 44-crystal
phase. A phase diagram in the literature shows that for
η < 0.571, the 44-crystal phase is thermodynamically
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FIG. S1. Equations of states (i.e. the reduced 2D lateral pres-
sure P ∗ = βPσ2 as a function of packing fraction η) of the
liquid (dots), 44 crystal (triangles) and 5� crystal (squares)
phases in a system of hard spheres confined between two pla-
nar hard walls separated by a distance H/σ = 4. Curves
are the fifth degree polynomial fittings of equations of states
of the liquid (red), 44 crystal (green) and 5� crystal (blue)
phases. The yellow line indicates the region where the liquid
and 44 crystal phases coexist and the star indicates the point
where the pressure is the same for both the 44 and 5� crys-
tal phases. Our nucleation study is carried out in the region
35.8 ≤ P ∗ ≤ 40 (white area between the dotted lines).

stable as its free energy is lower than that of the 5� phase
[1]. Using the 5�-crystal phase as the initial configura-
tion in our simulations, we find that this phase remains
metastable down to a pressure P ∗ = 35.8, which corre-
sponds to a packing fraction η = 0.479. We also note
that at η = 0.479, both the 44 and 5� crystals have the
same pressure P ∗ = 35.8. The 5�-crystal phase is thus
metastable in the region 0.479 < η < 0.571. Due to the
limited simulation time, a critical nucleus cannot form in
the 5� → 44 transition at η > 0.500. We calculate the
chemical potentials of each phase using thermodynamic
integration along the equation of state. For η ≤ 0.500,
the chemical potential difference between the 5�-solid
and liquid phases, µ�−L, decreases with increasing pack-
ing fraction η (see Table 1 or Fig. S2). This reduces
the thermodynamic driving force for nucleation and low-
ers the probability of observing liquid droplets through
density fluctuations in our simulations. As a result, we
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P ∗ ηL η4 η� βµL βµ4 βµ� βµ�−L βµL−4
40 0.460 0.492 0.500 15.14 15.02 15.34 0.20 0.12
39 0.457 0.489 0.496 14.85 14.75 15.08 0.23 0.10
38 0.454 0.486 0.491 14.56 14.48 14.81 0.25 0.08
37 0.451 0.483 0.487 14.27 14.21 14.54 0.27 0.06

TABLE I. Pressure P ∗ = βPσ2, packing fraction η and chemical potentials βµ for the liquid, 44-solid and 5�-solid phases.
βµ�−L is the chemical potential difference between 5� and the liquid, and βµL−4 is the chemical potential difference between
the liquid and the 44-solid phase.
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FIG. S2. Chemical potentials βµ for the liquid, 44 and 5�
phases in the region 35.8 < P ∗ < 70 where the liquid and 5�
are metastable. Inset shows chemical potentials in the region
35.8 ≤ P ∗ ≤ 40.

focus on nucleation in the region 0.479 ≤ η ≤ 0.500 or
35.8 ≤ P ∗ ≤ 40.

II. FORMATION OF A LIQUID DROPLET IN
THE SOLID-SOLID TRANSITION

In the EDMD simulations, the defect-free 5�-solid
phase at packing fraction η = 0.490 developed small
liquid-like clusters which fluctuated in size. After a long
induction time, a critical liquid nucleus appeared embed-
ding a 44-nucleus. The bond orientational order param-
eter Ψ6 has been used to distinguish among the fluid-,
44-, and 5�-like particles in the main text. However,
as the liquid-like particles move much faster than the
crystalline particles, one can also employ a dynamic cri-
terion. To this end, we measure the self-part of the Van
Hove correlation function as defined by [2]

Gs(R, t) =
1

N

〈
N∑
i

δ (R− |Ri(t+ tw)−Ri(tw)|)

〉
,

(2)
where Ri(t) is the position of particle i at time t, and R
the diffusion distance of the particles during time interval
t. At short waiting times, the Van Hove correlation func-
tion is Gaussian. As soon as a liquid nucleus starts to
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FIG. S3. (a) Self-part of the Van Hove correlation function
G(R, t = 10τ) at waiting times tw = 468τ and tw = 518τ . The
vertical line marks the non-Gaussian long tails corresponding
to the fast-moving particles. Solid curves are the Gaussian
fits. (b) A typical configuration at waiting time tw = 518τ of
the EDMD simulation at packing fraction η = 0.490. The red
and blue particles denote the fast-moving and slow-moving
particles, respectively.

grow at waiting times tw = 468τ and 518τ , the Van Hove
correlation function becomes non-Gaussian as shown in
Fig. S3a. The long tail of the self-part of the Van Hove
correlation function indicates the presence of liquid-like
particles with higher mobilities than the solid-like par-
ticles. In Fig. S3b, the fast-moving particles, i.e. those
with displacement > 0.5σ in a time interval t = 10τ , cor-
respond to disordered fluid-like particles, which confirms
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FIG. S4. The density profile across the diameter of the cluster
at waiting time tw = 518τ in MD time units and at a packing
fraction η = 0.490. The green dashed line denotes the packing
fraction of the metastable 5� phase. The location of the
liquid-44 nucleus is denoted by the shaded region.

the formation of a liquid-like droplet in the nucleation
process. In addition, the density profile of the cluster in
Fig. S4 confirms the formation of a liquid-like droplet.
The packing fraction a long way from the nucleus ap-
proaches that of the metastable 5� phase.

III. CLASSICAL NUCLEATION THEORY FOR
THE 5�→ 44 SOLID-SOLID TRANSITION

We consider a simple model for the nucleation process.
We assume that nucleation proceeds via the formation of
a nucleus consisting of liquid-like and 4-solid-like parti-
cles. In addition, we assume that the nucleus is cylin-
drical with height H and consists of a cylindrical core of
4-solid-like particles surrounded by a cylindrical ring of
liquid. We first consider two systems as shown in Fig. S5.
System I contains the homogeneous metastable 5� phase,
characterized by entropy SI , volume V I , and number of
particles N , confined between two planar hard walls of
total area Atot = 2A, where A is the surface area of a
single wall. System II contains a cluster consisting of NL
liquid particles and N4 particles of the 44−solid phase.

The difference between the Gibbs free energies of sys-
tems II and I is then given by

∆G = (µL − µ�)NL + (µ4 − µ�)N4

+(γ4W − γ�W )A4 + (γLW − γ�W )AL

+γ4LA4L + γL�AL�, (3)

where γαβ and Aαβ are the surface free energy (ten-
sion) and surface area for the α − β interface re-
spectively, where α, β refer to L,�,4 and the hard
wall, W . For a cylindrical core of 4-solid-like
particles surrounded by a cylindrical ring of liquid-
like particles, we have A4 = 2N4/(Hρ4), AL =

2NL/(HρL), A4L =
√

4πH/ρ4
√
N4 and AL� =

FIG. S5. A simple model for nucleation in a solid-solid transi-
tion. System I contains the homogeneous metastable 5�-solid
phase confined between two planar hard walls. System II con-
tains a cluster consisting of a 44−solid-like core, surrounded
by a liquid-like nucleus in a 5� solid confined between the
same two walls.
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FIG. S6. Contour Plot of β∆G(NL, N4) as obtained from
classical nucleation theory for the 5� → 44 solid-solid tran-
sition at pressure P ∗ = 40. The green line represents a tran-
sition pathway along the N� axis at NL = 0, and the blue
line represents a transition pathway along a contour line of
the surface.

√
4πH/ρL

√
(ρL/ρ4)N4 +NL. The Gibbs free-energy

difference then reads

∆G =

[
µL − µ� +

2

HρL
(γLW − γ�W )

]
NL

+

[
µ4 − µ� +

2

Hρ4
(γ4W − γ�W )

]
N4

+γ4L

√
4πHN4
ρ4

+γL�

√
4πH

ρL

(
ρL
ρ4

N4 +NL

)
. (4)

Figure S6 shows the free-energy landscape
∆G(NL, N4) obtained from Eq. 4 at pressure P ∗ = 40,
where we have used the wall-fluid interfacial tension
βγLWσ

2 = 1.990, the wall-4 solid interfacial tension
βγ4Wσ

2 = 1.457, the wall-� solid interfacial tension
βγ�Wσ

2 = 2.106 [1], and the liquid-solid interfacial
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FIG. S7. Contour Plot of β∆G(NL, N4) as obtained from the
modified CNT model for the 5� → 44 solid-solid transition
at pressure P ∗ = 40 with parameters S = 0.03, ξ = 0.5
and δε = 0. The saddle points are marked by stars. White
lines represent transition pathways along the valley floor and
through the saddle points.

tension βγLTσ
2 = 0.62 and βγL�σ

2 = 0.62 [3]. The
free-energy surface shows that a high free-energy barrier
stands between the 5�-solid and the 44-solid phase
(i.e. a path along the N� axis at NL = 0) due to the
large free-energy cost associated with the formation of
an interface between the two solid phases. This prevents
a direct transformation of the 5�−solid to the 44−solid
phase. Instead, a lower free-energy path involves the
formation of a liquid droplet, which beyond the saddle
point grows spontaneously into the metastable liquid.
The free-energy basin associated with the 44-solid
phase is separated from the liquid basin by a ridge
on the free-energy surface. This free-energy surface is
representative of a two-step nucleation mechanism where
a liquid droplet first forms and grows before the solid
phase nucleates, yielding two separate free-energy barri-
ers. However, it is also interesting to note that clusters
of the 44-crystal can grow inside a critical liquid-like
cluster without incurring an additional free-energy cost
by following a path along the contour lines of the surface.
The free energy surface obtained here differs from the
one obtained in our free-energy calculations in Monte
Carlo simulations using umbrella sampling.

IV. MODIFIED CNT MODEL

Now we consider two corrections of the classical nu-
cleation theorem (CNT) model. The first correction
term accounts for the disjoining pressure between the
5�-liquid and liquid-44 interfaces [4, 5]

∆G�−liquid−4 = A�LS exp [−(rL − r�)/ξ], (5)
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FIG. S8. Contour plot of β∆G(NL, N4) as obtained from the
modified CNT model for the 5� → 44 solid-solid transition
at pressure P ∗ = 40 with parameters S = 0.03, ξ = 0.5 and
δε = 0.15. The saddle points are marked by stars. The white
line represents transition pathways along the valley floor and
through the saddle point.

where S = γ�4−γ4L−γL� is the spreading parameter,
r is the nucleus radius, and ξ is the range of interaction
between the two interfaces. For S = 0, the contribution
of the disjoining pressure is zero. The second correc-
tion term is the strain energy Estrain ' NL∆ε associated
with the expansion of the nucleus [6]. By adding the two
correction terms to the CNT model, the free energy of
formation of a nucleus is then given by

∆G =

[
µL − µ� + ∆ε+

2

HρL
(γLW − γ�W )

]
NL

+

[
µ4 − µ� +

2

Hρ4
(γ4W − γ�W )

]
N4

+γ4L

√
4πHN4
ρ4

+γL�

√
4πH

ρL

(
ρL
ρ4

N4 +NL

)

+S exp [−(rL − r�)/ξ]

√
4πH

ρL

(
ρL
ρ4

N4 +NL

)
. (6)

As the values of γ�4, ξ and ∆ε are unknown, we treat
them as free parameters in the modified CNT model.
We set ξ = 0.5σ and find that the value of ξ does not
affect the shape of the free-energy surface. Figure S7
is the free-energy surface of the modified CNT model
with parameters βSσ2 = 0.03 and ∆ε = 0. There are
two saddle points as denoted by the white asterisks in
Figure S7, one for the pure liquid nucleus and the other
for the liquid-4 nucleus. As the value of the spreading
parameter S increases, the saddle point of the liquid-4
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FIG. S9. The free energy barriers of the pure liquid nucleus
and liquid-4 nucleus as a function of strain energy ∆ε at
P ∗ = 40. The other parameters are βSσ2 = 0.03 and ξ =
0.5σ.

nucleus moves towards the saddle point of the pure liquid
nucleus, but the lowest free-energy pathway is always the
one along the saddle point of the pure liquid involving the
formation of a liquid nucleus.

Figure S8 is the free-energy surface of the modified
CNT model with parameters S = 0.03 and β∆ε = 0.15,
and thus includes a correction made to the strain energy
of the 5� crystal lattice. In this case, the free-energy
barrier is ∆G = 45.6kBT for the pure liquid nucleus and
∆G = 34.3kBT for the liquid-4 nucleus. Thus, the path-
way along the liquid-4 nucleus has the lowest free-energy
barrier. Figure S9 shows the free-energy barriers of the
pure liquid nucleus and of the liquid-4 nucleus as a func-
tion of ∆ε. For β∆ε < 0.108, the nucleation process is
� → liquid → 4; for β∆ε > 0.108, the nucleation pro-
cess is � → (liquid-4) → 4. Note that the modified
CNT model includes the possibility of liquid-4 critical
nucleus, the fluctuations leading to the growth of the
critical cluster along the N4 axis. But in our simulation,

a pure liquid nucleus is formed at the first stage of the
nucleation, unlike in the simulations.

V. NUCLEATION RATES FROM EDMD
SIMULATIONS

For packing fraction η < 0.490, EDMD simulations
can reveal every step of the nucleation process. The
nucleation rate can be calculated by employing a com-
bination of EDMD simulations and the mean first pas-
sage time analysis [7, 8]. At each packing fraction
η = 0.480, 0.485, 0.488 and 0.490, we collect 3000 nu-
cleation trajectories and calculate the mean first passage
time, τ(NL), for the formation of the cluster contain-
ing NL liquid particles and the mean first passage time,
τ(N4), for the formation of the cluster containing N4
4-solid particles. These quantities are calculated inde-
pendently, even though the triangular solid phase forms
only in the presence of the liquid droplet. We estimate
the size of the critical nucleus and the nucleation rate
J by substituting the mean first passage times into the
following expression [7, 8]:

τ(Ni) =
1

2JV
{1 + erf[C(Ni −Ncri)]}, (7)

where i = L,4, Ncri is the critical size of the nucleus, J
is the nucleation rate, V is the system volume, erf(x) is
the error function, and C represents the curvature at the
top of the nucleation barrier. Figure S10 shows the mean
first passage times at η = 0.480, 0.485, and0.488. The
corresponding fitting parameters of Eq.(7) are presented
in Table II. The critical size of the 44 nucleus does not
change appreciably across η. In addition, we find that
the nucleation rates J for the liquid-like and 44 solid-
like clusters are very similar, which suggests that they
describe the same nucleation barrier. The difference be-
tween the nucleation rates increases only slightly with
decreasing η, which indicates that the 4-solid nucleates
within a liquid nucleus.
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liquid 44
η JL(τ/σ3) CL Ncri,L J4(τ/σ3) C4 Ncri,4

0.480 3.53× 10−6 0.0437 395 4.07× 10−6 0.246 5
0.485 8.98× 10−7 0.0982 242 9.90× 10−7 0.314 6
0.488 2.40× 10−7 0.0157 199 2.42× 10−7 0.319 6
0.490 1.43× 10−7 0.0216 166 1.43× 10−7 0.394 6

TABLE II. Fitting parameters of the mean first passage time for the liquid and the 44 solid at packing fractions η = 0.480,
0.485, 0.488 and 0.490. Ncri is the critical nucleus size. JL and J4 are the nucleation rate for the liquid and the 44 solid,
respectively. CL and C4 denote the curvature at the top of the nucleation barrier.
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FIG. S10. The mean first passage time measured in EDMD time units for liquid-like (a, c, e) and 44−solid-like (b, d, f)
clusters as obtained from EDMD simulation at packing fractions η = 0.480 (a, b), 0.485 (c, d) and 0.488 (e, f). Lines are fits
of the mean first passage time using 1

2JV
{1 + erf[C(N −Ncri)]}. The fitting parameters are shown in Table II.
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